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Major Problem of Centralized Learning
● Inability to protect subject’s data 

confidential. 
● Aggregate all the data in a place.

Figure 1: Mechanism of Federated Learning.

How to overcome this hurdle?
● Federated Learning
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¹ Source: https://www.buoyhealth.com/learn/is-dementia-hereditary

Alzheimer’s disease 
● Alzheimer's is caused by damage to nerve cells 

(neurons) in the brain.
● 55 million in 2019 – is expected to rise to 

139 million in 2050 globally.
● According to Alzheimer’s disease facts and 

figures 2023, In USA every 1 in 3 seniors die of 
Alzheimer’s or another dementia.

Figure 2: Impact of Alzheimer’s 
disease¹.
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¹ Source: https://my.clevelandclinic.org/health/diseases

Brain tumor
● Brain tumor is a caused by growth of abnormal 

cells in the brain.
● Example of source of cancerous or malignant 

tumor is olfactory neuroblastoma, 
chondrosarcoma and medulloblastoma.

● About 78% of cancerous primary brain tumors 
are gliomas¹. Figure 3: Glioblastoma Brain Tumor¹.

https://www.hopkinsmedicine.org/health/conditions-and-diseases/olfactory-neuroblastoma
https://www.hopkinsmedicine.org/health/conditions-and-diseases/sarcoma/chondrosarcoma
https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor/medulloblastoma
https://my.clevelandclinic.org/health/diseases/21969-glioma
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Objectives
● This paper mainly utilizes the increasing parallelism method of FL for the 

classification of brain diseases.
● We investigate the minimum number of client participants required to 

achieve a standard performance in cross-silo FL.
● We employ the simple but effective LeNet5 CNN model, and also focus 

on performance improvement by considering numerous metrics.
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 Summarization of prior Alzheimer’s disease classification papers
Type Data Ref. Model Performance Year

Federated MRI [3] CNN Acc = 0.86, pre = 0.81, rec = 0.81, and f1=0.81 2022

Federated MRI [4] CNN Acc = 0.92, rec = 1.0, spec = 0.91 2021

Centralized EEG [5] SVM, LR, KNN, DT Sen = 0.99, spec = 1.0, f1 = 0.98 using 10-fold CV 2022

Centralized EEG [6] ELM, SVM, KNN Acc = 0.99, pre = 1.0, rec = 0.98, and f1 = 0.99 using ELM. 2020

Centralized EEG [7] SVM, LR Acc = 0.88, rec = 0.85, spe = 95 2019

Centralized MRI [8] CNN Acc = 1.0 for fMRI, and acc = 0.99 for MRI. 2016

Centralized MRI [9] SVM Acc = 0.88, sen = 0.9, spe = 0.87, and AUC = .89 2016

Table 1: Summarization of prior Alzheimer’s disease classification papers.
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 Summarization of prior brain tumor classification papers
Type Data Ref. Model Performance Year

Federated MRI [12] CNN Acc = 0.95, pre = 0.97, rec = 0.96, and f1=0.94 2022

Centralized MRI [13] UNet, Markov M. Acc train = 0.91, acc test = 0.92 using U-Net. 2020

Centralized EEG [14] VGGNet, AlexNet,GoogleNet Acc = 0.99 max by using VGGNet. 2020

Centralized EEG [15] CNN Acc train = 0.99 and acc valid = 0.84. 2019

Centralized EEG [16] Caps-Net Acc = 0.87 2019

Centralized MRI [17] CNN Acc = 0.91 and rec = 0.88, 0.81, 0.99 for the detection of 
Meningioma, glioma, and pituitary tumor respectively.

2016

Centralized MRI [18] SVM Acc = 1.0 using RBF and polynomial kernel. 2016

Table 2: Summarization of prior brain tumor classification papers.
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Research gaps
● Centralized approaches aggregate all the training data dynamics in a 

place that’s indicates it is unable to provide data confidentiality.
● Empirical analysis  of privacy-preserving federated learning in Alzheimer’s 

and Brain tumor classification.
● Performance improvement by considering numerous metrics for federated 

settings.
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Figure 4: Overview diagram of this paper.

Proposed work
● Parallelism in federated learning

for brain disease classification.
● Minimum client participation for 

moderate or better performance.
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Datasets description

Type Total Trainset Testset

Alzheimer’s 
Disease

3200 2560 640

Healthy Control 3200 2560 640

Type Total Trainset Testset

Glioma 1621 1297 324

Meningioma 1645 1316 329

Pituitary 1757 1406 351

Healthy Control 2000 1600 400

Table 3: Description of Alzheimer’s disease data. Table 4: Description of brain tumor data.
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Dataset preprocessing
● Resizing
● Normalization

Federated settings
● Cross-silo federated learning.  
● 10 Clients.
● Central aggregator FedAvg algorithm.

- Working mechanism: weighted mean.

Classification model
● CNN (LeNet5)

Evaluation metrics
● Accuracy  
● Precision
● Recall
● F1-score
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Findings of Alzheimer’s disease classification 
Client Optimizer Train 

Accuracy
Test 
Accuracy

Precision Recall F1 
Score

0.1 Adam 77.12% 82.19% 82% 82% 82%

0.2 Adam 79.81% 82.42% 83% 82% 82%

0.3 Adam 82.88% 83.36% 84% 83% 83%

0.7 Adam 89.81% 80.69% 85% 85% 85%

0.8 Adam 81.73% 80.94% 81% 81% 81%

0.9 Adam 78.46% 77.79% 78% 77% 77%

1.0 Adam 86.15% 85% 85% 85% 85%

Client Optimizer Train 
Accuracy

Test 
Accuracy

Precision Recall F1 
Score

0.1 SGD 91.35% 90.94% 91.0% 91.0% 91.0%

0.2 SGD 95.0% 93.67% 94.0% 94.0% 94.0%

0.3 SGD 96.15% 93.52% 94.0% 94.0% 94.0%

0.7 SGD 88.08% 92.73% 93.0% 93.0% 93.0%

0.8 SGD 91.73% 93.98% 94.0% 94.0% 94.0%

0.9 SGD 95.96% 95.23% 95.0% 95.0% 95.0%

1.0 SGD 96.16% 95% 95% 95% 95%

Table 5: Findings of Alzheimer’s disease classification.
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Visualization of Alzheimer’s disease findings 

Figure 5:Visualization of Alzheimer’s disease findings.
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Performance comparison for Alzheimer’s disease classification
Type Data Ref. Model Performance Year

Federated MRI [3] CNN Acc = 0.86, pre = 0.81, rec = 0.81, and f1=0.81 2022

Federated MRI [4] CNN Acc = 0.92, rec = 1.0, spec = 0.91 2021

Our Proposed MRI - LeNet5 Acc = 0.95, pre = 0.95, rec = 0.95, f1 = 0.95 2024

Centralized EEG [5] SVM, LR, KNN, DT Sen = 0.99, spec = 1.0, f1 = 0.98 using 10-fold CV 2022

Centralized EEG [6] ELM, SVM, KNN Acc = 0.99, pre = 1.0, rec = 0.98, and f1 = 0.99 using ELM. 2020

Centralized EEG [7] SVM, LR Acc = 0.88, rec = 0.85, spe = 95 2019

Centralized MRI [8] CNN Acc = 1.0 for fMRI, and acc = 0.99 for MRI. 2016

Table 6:Performance comparison for Alzheimer’s disease classification. 
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Findings of brain tumor classification 
Client Optimizer Train 

Accuracy
Test 
Accuracy

Precision Recall F1 
Score

0.1 Adam 69.47% 79.15% 79% 79% 78%

0.2 Adam 89.30% 84.27% 84% 84% 84%

0.3 Adam 85.79% 84.34% 85% 84% 84%

0.7 Adam 88.42% 85.62% 86% 86% 86%

0.8 Adam 87.72% 85.91% 86% 86% 86%

0.9 Adam 90.18% 89.68% 90% 90% 90%

1.0 Adam 87.89% 87.97% 88% 88% 88%

Client Optimizer Train 
Accuracy

Test 
Accuracy

Precision Recall F1 
Score

0.1 SGD 91.93% 92.95% 93.0% 93.0% 93.0%

0.2 SGD 94.56% 93.67% 94.0% 94.0% 94.0%

0.3 SGD 91.93% 94.52% 95.0% 95.0% 95.0%

0.7 SGD 91.23% 93.45% 93.0% 93.0% 94.0%

0.8 SGD 96.67% 94.66% 95.0% 95.0% 95.0%

0.9 SGD 87.71% 94.38% 94.0% 94.0% 94.0%

1.0 SGD 88.42% 94.38% 95% 95% 95%

Table 7: Findings of brain tumor classification. 
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Visualization of brain tumor findings 

Figure 6:Visualization of brain tumor findings.
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Performance comparison for brain tumor classification
Type Data Ref. Model Performance Year

Federated MRI [12] CNN Acc = 0.95, pre = 0.97, rec = 0.96, and f1=0.94 2022

Our Proposed MRI - LeNet5 Acc = 0.95, pre = 0.95, rec = 0.95, f1 = 0.95 2024

Centralized MRI [13] UNet, Markov M. Acc train = 0.91, acc test = 0.92 using U-Net. 2020

Centralized EEG [14] VGGNet, AlexNet, GoogleNet Acc = 0.99 max by using VGGNet. 2020

Centralized EEG [15] CNN Acc train = 0.99 and acc valid = 0.84. 2019

Centralized EEG [16] Caps-Net Acc = 0.87 2019

Centralized MRI [17] CNN Acc = 0.91 and rec = 0.88, 0.81, 0.99 for the detection 
of Meningioma, glioma, and pituitary tumor respectively.

2016

Table 8: Performance comparison of brain tumor classification.
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The key points to conclude are listed below:
● The LeNet5 model, with the Adam and SGD optimizers, achieves an 

average of 95% accuracy, precision, recall, and F1 score for Alzheimer's 
disease classification with 90% and 100% client participation.

● For brain tumor classification, a mean accuracy of 94.66%, and precision, 
recall, and F1 score of 95% are achieved using the LeNet5 with SGD 
optimizer.

● About a minimum of 20% of client participation is required to achieve a 
moderate or better result in case of balanced or mostly balanced dataset.
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The following are considered for future advancement: 
● secure communication of model parameters.
● Communication round minimization.
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